Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultrason Sonochem ; 21(1): 15-22, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23751458

RESUMO

Biofilm elimination is often necessary during antimicrobial therapy or industrial medical manufacturing decontamination. In this context, ultrasound treatment has been frequently described in the literature for its antibiofilm effectiveness, but at the same time, various authors have described ultrasound as a formidable enhancer of bacterial viability. This discrepancy has found no solution in the current literature for around 9 years; some works have shown that every time bacteria are exposed to an ultrasonic field, both destruction and stimulation phenomena co-exist. This co-existence proves to have different final effects based on various factors such as: ultrasound frequency and intensity, the bacterial species involved, the material used for ultrasound diffusion, the presence of cavitation effects and the forms of bacterial planktonic or biofilm. The aim of this work is to analyze current concepts regarding ultrasound effect on prokaryotic cells, and in particular ultrasound activity on bacterial biofilm.


Assuntos
Bactérias , Fenômenos Fisiológicos Bacterianos , Biofilmes/crescimento & desenvolvimento , Ultrassom/métodos , Humanos , Viabilidade Microbiana , Terapia por Ultrassom
2.
J Acoust Soc Am ; 111(6): 2594-600, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12083190

RESUMO

The growth, collapse, and rebound of a vapor bubble generated by an underwater spark is studied by means of high-speed cinematography, simultaneously acquiring the emitted acoustic signature. Video recordings show that the growth and collapse phases are nearly symmetrical during the first two or three cycles, the bubble shape being approximately spherical. After 2-3 cycles the bubble behavior changes from a collapsing/rebounding regime with sound-emitting implosions to a pulsating regime with no implosions. The motion of the bubble wall during the first collapses was found to be consistent with the Rayleigh model of a cavity in an incompressible liquid, with the inclusion of a vapor pressure term at constant temperature within each bubble cycle. An estimate of the pressure inside the bubble is obtained measuring the collapse time and maximum radius, and the amount of energy converted into acoustical energy upon each implosion is deduced. The resulting value of acoustic efficiency was found to be in agreement with measurements based on the emitted acoustic pulse.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...